|
ОПТИМИЗАЦИЯ ОЦЕНКИ ВЕРОЯТНОСТИ ОШИБОЧНОЙ К
By: Виктор Неделько
(3881 reads)
Rating:
(1.00/10)
|
Abstract: The goal of the paper is to investigate what training sample estimate of misclassification probability
would be the best one for the histogram classifier. Certain quality criterion is suggested. The deviation for some
estimates, such as resubstitution error (empirical risk), cross validation error (leave-one-out), bootstrap and for
the best estimate obtained via some optimization procedure, is calculated and compared for some examples.
Keywords: pattern recognition, classification, statistical robustness, deciding functions, complexity, capacity,
overfitting, overtraining problem.
ACM Classification Keywords: G.3 Probability and statistics, G.1.6. Numerical analysis: Optimization; G.2.m.
Discrete mathematics: miscellaneous.
Link:
ОПТИМИЗАЦИЯ ОЦЕНКИ ВЕРОЯТНОСТИ ОШИБОЧНОЙ КЛАССИФИКАЦИИ
В ДИСКРЕТНОМ СЛУЧАЕ1
Виктор Неделько
http://foibg.com/ibs_isc/ibs-08/ibs-08-p07.pdf
|
О НЕКОТОРЫХ ТРУДНОРЕШАЕМЫХ ЗАДАЧАХ ПОМЕХОУ
By: Александр Кельманов
(3365 reads)
Rating:
(1.00/10)
|
Аннотация: Рассматриваются дискретные экстремальные задачи, к которым сводятся некоторые
варианты проблемы помехоустойчивого off-line обнаружения в числовой последовательности
повторяющегося фрагмента, а также некоторые варианты проблемы поиска подмножеств векторов
во множестве векторов евклидова пространства. Анализируется сложность редуцированных
оптимизационных задач и соответствующих им задач анализа данных и распознавания образов. Дан
обзор новых и известных алгоритмических результатов по решению этих задач.
Ключевые слова: поиск подмножеств векторов, помехоустойчивое обнаружение повторяющегося
фрагмента, кластерный анализ, дискретная оптимизация, NP-трудная задача, алгоритмы с
гарантированными оценками точности.
ACM Classification Keywords: F.2. Analysis of Algorithms and Problem Complexity, G.1.6. Optimization, G2.
Discrete Mathematics, I.5.3. Pattern Recognition: Clustering.
Link:
О НЕКОТОРЫХ ТРУДНОРЕШАЕМЫХ ЗАДАЧАХ ПОМЕХОУСТОЙЧИВОГО
АНАЛИЗА СТРУКТУРИРОВАННЫХ ДАННЫХ1
Александр Кельманов
http://foibg.com/ibs_isc/ibs-08/ibs-08-p06.pdf
|
МНОГОКРИТЕРИАЛЬНАЯ ОПТИМИЗАЦИЯ АРХИТЕКТУР
By: Воронин et al.
(4214 reads)
Rating:
(1.00/10)
|
Аннотация. Рассматривается постановка задачи и процедура векторной оптимизации архитектуры
нейросетевого классификатора. В качестве целевой функции предложена скалярная свертка
критериев по нелинейной схеме компромиссов. Используются поисковые методы оптимизации с
дискретными аргументами. Приведен пример – нейросетевой классификатор текстов.
Ключевые слова: многокритериальная оптимизация, нейронные сети, классификатор.
ACM Classification Keywords: H.1 Models and Principles – H.1.1 – Systems and Information Theory; H.4.2 –
Types of Systems; C.1.3 Other Architecture Styles – Neural nets
Link:
МНОГОКРИТЕРИАЛЬНАЯ ОПТИМИЗАЦИЯ АРХИТЕКТУРЫ
НЕЙРОСЕТЕВЫХ КЛАССИФИКАТОРОВ
Альберт Воронин, Юрий Зиатдинов, Анна Антонюк
http://foibg.com/ibs_isc/ibs-08/ibs-08-p05.pdf
|
STRING MEASURE APPLIED TO STRING SELF-ORGANIZING MAPS AND NETWORKS OF ...
By: Gómez Blas et al.
(3709 reads)
Rating:
(1.00/10)
|
Abstract: This paper shows some ideas about how to incorporate a string learning stage in self-organizing
algorithms. T. Kohonen and P. Somervuo have shown that self-organizing maps (SOM) are not restricted to
numerical data. This paper proposes a symbolic measure that is used to implement a string self-organizing map
based on SOM algorithm. Such measure between two strings is a new string. Computation over strings is
performed using a priority relationship among symbols; in this case, symbolic measure is able to generate new
symbols. A complementary operation is defined in order to apply such measure to DNA strands. Finally, an
algorithm is proposed in order to be able to implement a string self-organizing map.
Keywords: Neural Network, Self-organizing Maps, and Control Feedback Methods.
ACM Classification Keywords: F.1.1 Models of Computation: Self-modifying machines (neural networks);
F.1.2 Modes of Computation: Alternation and non-determinism.
Link:
STRING MEASURE APPLIED TO STRING SELF-ORGANIZING MAPS AND
NETWORKS OF EVOLUTIONARY PROCESSORS1
Nuria Gómez Blas, Luis F. de Mingo, Francisco Gisbert, Juan M. Garitagoitia
|
CLASSIFICATION OF DATA TO EXTRACT KNOWLEDGE FROM NEURAL NETWORKS
By: Martinez et al.
(3476 reads)
Rating:
(1.00/10)
|
Abstract: A major drawback of artificial neural networks is their black-box character. Therefore, the rule
extraction algorithm is becoming more and more important in explaining the extracted rules from the neural
networks. In this paper, we use a method that can be used for symbolic knowledge extraction from neural
networks, once they have been trained with desired function. The basis of this method is the weights of the neural
network trained. This method allows knowledge extraction from neural networks with continuous inputs and
output as well as rule extraction. An example of the application is showed. This example is based on the
extraction of average load demand of a power plant.
Keywords: Neural Network, Backpropagation, Control Feedback Methods.
ACM Classification Keywords: F.1.1 Models of Computation: Self-modifying machines (neural networks); F.1.2
Modes of Computation: Alternation and nondeterminism.
Link:
CLASSIFICATION OF DATA TO EXTRACT KNOWLEDGE
FROM NEURAL NETWORKS
Ana Martinez, Angel Castellanos, Rafael Gonzalo
|
EXACT DISCRIMINANT FUNCTION DESIGN USING SOME OPTIMIZATION TECHNIQUES
By: Yury Laptin, Alexander Vinogradov
(3925 reads)
Rating:
(1.00/10)
|
Abstract: Some aspects of design of the discriminant functions that in the best way separate points of predefined
final sets are considered. The concept is introduced of the nested discriminant functions which allow to separate
correctly points of any of the final sets. It is proposed to apply some methods of non-smooth optimization to solve
arising extremal problems efficiently.
Keywords: cluster, solving rule, discriminant function, linear and non-linear programming, non-smooth
optimization
ACM Classification Keywords: G.1.6 Optimization - Gradient methods, I.5 Pattern Recognition; I.5.2 Design
Methodology - Classifier design and evaluation
Link:
EXACT DISCRIMINANT FUNCTION DESIGN
USING SOME OPTIMIZATION TECHNIQUES
Yury Laptin, Alexander Vinogradov
http://foibg.com/ibs_isc/ibs-08/ibs-08-p02.pdf
|
OPTIMAL DECISION RULES IN LOGICAL RECOGNITION MODELS
By: Anatol Gupal, Vladimir Ryazanov
(3325 reads)
Rating:
(1.00/10)
|
Abstract: The task of smooth and stable decision rules construction in logical recognition models is considered.
Logical regularities of classes are defined as conjunctions of one-place predicates that determine the
membership of features values in an intervals of the real axis. The conjunctions are true on a special no
extending subsets of reference objects of some class and are optimal. The standard approach of linear decision
rules construction for given sets of logical regularities consists in realization of voting schemes. The weighting
coefficients of voting procedures are done as heuristic ones or are as solutions of complex optimization task. The
modifications of linear decision rules are proposed that are based on the search of maximal estimations of
standard objects for their classes and use approximations of logical regularities by smooth sigmoid functions.
Keywords: precedent-recognition recognition, logical regularities of classes, estimate calculation algorithms,
integer programming, decision rules, sigmoid formatting rules
Link:
OPTIMAL DECISION RULES IN LOGICAL RECOGNITION MODELS
Anatol Gupal, Vladimir Ryazanov
http://foibg.com/ibs_isc/ibs-08/ibs-08-p01.pdf
|
GENERATING MORE BOUNDARY ELEMENTS OF SUBSET PROJECTIONS
By: Hasmik Sahakyan, Levon Aslanyan
(4027 reads)
Rating:
(1.00/10)
|
Abstract: Composition problem is considered for partition constrained vertex subsets of n dimensional unit cube
En . Generating numerical characteristics of En subsets partitions is considered by means of the same
characteristics in n −1 dimensional unit cube, and construction of corresponding subsets is given for a special
particular case. Using pairs of lower layer characteristic vectors for En−1 more characteristic vectors for En are
composed which are boundary from one side, and which take part in practical recognition of validness of a given
candidate vector of partitions.
Keywords: monotone Boolean functions, (0,1)-matrices
ACM Classification Keywords: G.2.1 Discrete mathematics: Combinatorics
Link:
GENERATING MORE BOUNDARY ELEMENTS OF SUBSET PROJECTIONS
Hasmik Sahakyan, Levon Aslanyan
http://foibg.com/ibs_isc/ibs-09/ibs-09-p18.pdf
|
SELF EVOLVING CHARACTER RECOGNITION USING GENETIC OPERATORS
By: Shashank Mathur
(3948 reads)
Rating:
(1.00/10)
|
Abstract: In this paper, a novel approach for character recognition has been presented with the help of genetic
operators which have evolved from biological genetics and help us to achieve highly accurate results. A genetic
algorithm approach has been described in which the biological haploid chromosomes have been implemented
using a single row bit pattern of 315 values which have been operated upon by various genetic operators. A set of
characters are taken as an initial population from which various new generations of characters are generated with
the help of selection, crossover and mutation. Variations of population of characters are evolved from which the
fittest solution is found by subjecting the various populations to a new fitness function developed. The
methodology works and reduces the dissimilarity coefficient found by the fitness function between the character
to be recognized and members of the populations and on reaching threshold limit of the error found from
dissimilarity, it recognizes the character. As the new population is being generated from the older population,
traits are passed on from one generation to another. We present a methodology with the help of which we are
able to achieve highly efficient character recognition.
Keywords: Genetic operators, character recognition, genetics, genetic algorithm.
ACM Classification Keywords: I.2 Artificial Intelligence, I.4 Image processing and computer vision, I.5 Pattern
Recognition.
Link:
SELF EVOLVING CHARACTER RECOGNITION USING GENETIC OPERATORS
Shashank Mathur
http://foibg.com/ibs_isc/ibs-09/ibs-09-p17.pdf
|
IMPLEMENTATION OF GENETIC ALGORITHMS FOR TRANSIT POINTS ARRANGEMENT
By: Dmitry Panchenko, Maxim Shcherbakov
(3984 reads)
Rating:
(1.00/10)
|
Abstract: The problem of transit points arrangement is presented in the paper. This issue is connected with
accuracy of tariff distance calculation and it is the urgent problem at present. Was showed that standard method
of tariff distance discovering is not optimal. The Genetic Algorithms are used in optimization problem resolution.
The UML application class diagram and class content are showed. In the end the example of transit points
arrangement is represented.
Keywords: transit points arrangement, genetic algorithms, optimization, software application.
ACM Classification Keywords: G.1.6 Optimization - Global optimization, D.1.1 Applicative (Functional)
Programming
Link:
IMPLEMENTATION OF GENETIC ALGORITHMS FOR TRANSIT POINTS
ARRANGEMENT
Dmitry Panchenko, Maxim Shcherbakov
http://foibg.com/ibs_isc/ibs-09/ibs-09-p16.pdf
|
ANALYSIS OF P-SYSTEMS UNDER A MULTIAGENT SYSTEMS PERSPECTIVE
By: Arteta et al.
(3062 reads)
Rating:
(1.00/10)
|
Abstract: Membrane computing is a recent area that belongs to natural computing. This field works on
computational models based on nature's behavior to process the information. Recently, numerous models have
been developed and implemented with this purpose. P-systems are the structures which have been defined,
developed and implemented to simulate the behavior and the evolution of membrane systems which we find in
nature. What we show in this paper is an application capable to simulate the P-systems based on a multiagent
systems (MAS) technology. The main goal we want to achieve is to take advantage of the inner qualities of the
multiagent systems. This way we can analyse the proper functioning of any given p-system. When we observe a
P-system from a different perspective, we can be assured that it is a particular case of the multiagent systems.
This opens a new possibility, in the future, to always evaluate the P-systems in terms of the multiagent systems
technology.
Keywords: P-systems mapping, multiagent systems.
Link:
ANALYSIS OF P-SYSTEMS UNDER A MULTIAGENT SYSTEMS PERSPECTIVE
Alberto Arteta, Angel Goñi, Juan Castellanos
http://foibg.com/ibs_isc/ibs-09/ibs-09-p15.pdf
|
THE CASCADE NEO-FUZZY ARCHITECTURE AND ITS ONLINE LEARNING ALGORITHM
By: Yevgeniy Bodyanskiy, Yevgen Viktorov
(4828 reads)
Rating:
(1.00/10)
|
Abstract: in the paper learning algorithm for adjusting weight coefficients of the Cascade Neo-Fuzzy? Neural
Network (CNFNN) in sequential mode is introduced. Concerned architecture has the similar structure with the
Cascade-Correlation? Learning Architecture proposed by S.E. Fahlman and C. Lebiere, but differs from it in type of
artificial neurons. CNFNN consists of neo-fuzzy neurons, which can be adjusted using high-speed linear learning
procedures. Proposed CNFNN is characterized by high learning rate, low size of learning sample and its
operations can be described by fuzzy linguistic “if-then” rules providing “transparency” of received results, as
compared with conventional neural networks. Using of online learning algorithm allows to process input data
sequentially in real time mode.
Keywords: artificial neural networks, constructive approach, fuzzy inference, hybrid systems, neo-fuzzy neuron,
real-time processing, online learning.
ACM Classification Keywords: I.2.6 Learning – Connectionism and neural nets
THE CASCADE NEO-FUZZY ARCHITECTURE
AND ITS ONLINE LEARNING ALGORITHM
Yevgeniy Bodyanskiy, Yevgen Viktorov
http://foibg.com/ibs_isc/ibs-09/ibs-09-p14.pdf
|
THE PRODUCTION SCHEDULING IN ASSEMBLY SYSTEM WITH EVOLUTIONARY ALGORITHM
By: Galina Setlak
(3358 reads)
Rating:
(1.00/10)
|
Abstract: In this paper an evolutionary algorithm is proposed for solving the problem of production scheduling in
assembly system. The aim of the paper is to investigate a possibility of the application of evolutionary algorithms
in the assembly system of a normally functioning enterprise producing household appliances to make the
production graphic schedule.
Keywords: Artificial intelligence, flexible assembly systems, evolutionary algorithm, production scheduling.
ACM Classification Keywords: I. Computing methodologies I.1.Symbolic and algebraic manipulation
I.1.3.Evaluation strategies I.2.Artificial Intelligence I.2.8.Problem solving Control Methods and Search –
Scheduling J.6.Computer Aided Engineering - Computer Aided Manufacturing (CAM).
Link:
THE PRODUCTION SCHEDULING IN ASSEMBLY SYSTEM
WITH EVOLUTIONARY ALGORITHM
Galina Setlak
http://foibg.com/ibs_isc/ibs-09/ibs-09-p13.pdf
|
ОТОБРАЖЕНИЕ И ВЫВОД ПО АНАЛОГИИ НА ОСНОВЕ Н
By: Сергей Слипченко, Дмитрий Рачков
(4085 reads)
Rating:
(1.00/10)
|
Аннотация: Развит подход к рассуждениям по аналогии для иерархически структурированных
описаний эпизодов, ситуаций и их компонентов на базе представлений аналогов в виде особой формы
векторных представлений - распределенных кодвекторных представлений. Предложены
распределенные представления компонентов аналогов, позволяющие непосредственно определять
соответствующие друг другу представления компонентов для реализации стадии отображения двух
аналогов, а также метод вывода по аналогии на их основе. Предложенные методы исследованы на
базах аналогий, которые ранее применялись для исследования ведущих моделей аналогии - SME и
ACME. Полученные результаты находятся на уровне результатах SME и ACME, однако за счет
использования сходства векторных представления обладают низкой вычислительной сложностью и
создают основу для более адекватного учета семантики аналогов и их компонентов. Это делает
предложенные методы перспективными для отображения фрагментов баз знаний с большим числом
компонентов.
Ключевые слова: аналогия, отображение аналогов, вывод по аналогии, распределенное
представление информации, кодвекторы, базы знаний, SME, ACME
ACM Classification Keywords: I.2 Artificial Intelligence, I.2.4 Knowledge Representation Formalisms and
Methods, I.2.6 Learning (Analogies)
Link:
ОТОБРАЖЕНИЕ И ВЫВОД ПО АНАЛОГИИ
НА ОСНОВЕ НЕЙРОСЕТЕВЫХ РАСПРЕДЕЛЕННЫХ ПРЕДСТАВЛЕНИЙ
Сергей Слипченко, Дмитрий Рачковский
http://foibg.com/ibs_isc/ibs-09/ibs-09-p12.pdf
|
ПРИМЕНЕНИЕ НЕЙРОННОЙ СЕТИ ХЕММИНГА И НЕЧЕТ�
By: Николай Мурга
(3899 reads)
Rating:
(1.00/10)
|
Аннотация: В данной работе исследуется применение нейронной сети Хемминга для обнаружения
краёв объектов на изображении. Изображение в оттенках серого, поступающее на вход предлагаемой
системы, подвергается преобразованию с применением нечёткой логики в двуцветное. После этого
из изображения последовательно выделяются блоки пикселей заданной размерности и подаются на
входы предварительно инициализированной сети Хемминга. Нейронная сеть выполняет
идентификацию краёв в блоке, и в новом изображении вставляет на место блока шаблон, который
отвечает коду, полученному на выходе сети. Работу завершает практическое применение метода.
Ключевые слова: Детектирование краёв объектов изображения, Метод разностного группирования,
Нейронная сеть Хемминга, Нечёткая логика.
ACM Classification Keywords: I.4.3. Enhancement – Grayscale manipulation, I.4.6. Segmentation – Edge and
feature detection, I.4.6. Segmentation – Pixel classification.
Link:
ПРИМЕНЕНИЕ НЕЙРОННОЙ СЕТИ ХЕММИНГА И НЕЧЕТКОЙ ЛОГИКИ
К ОБНАРУЖЕНИЮ КРАЕВ ОБЪЕКТОВ
НА ИЗОБРАЖЕНИЯХ В ОТТЕНКАХ СЕРОГО
Николай Мурга
http://foibg.com/ibs_isc/ibs-09/ibs-09-p11.pdf
|
ИНСТРУМЕНТАЛЬНАЯ СРЕДА ДЛЯ ИССЛЕДОВАНИЯ ЭВ
By: Павел Афонин
(3161 reads)
Rating:
(1.00/10)
|
Аннотация: В статье представлена инструментальная среда для исследования эволюционных
стратегий, которые используют механизм аппроксимации целевой функции с помощью аппарата
нейронных сетей. Приводится описание алгоритма эволюционной стратегии и подходы к построению
метамоделей. Рассмотрены существующие на сегодняшний день алгоритмы оптимизации на основе
эволюционных стратегий и метамоделей. Отмечается актуальность применения механизмов
адаптации в таких алгоритмах. Описаны основные функции и возможности инструментальной среды.
Средством реализации является программный пакет MatLab? v.7.1.
Ключевые слова: инструментальная среда, эволюционная стратегия, нейронная сеть, метамодель,
оптимизация.
Link:
ИНСТРУМЕНТАЛЬНАЯ СРЕДА ДЛЯ ИССЛЕДОВАНИЯ ЭВОЛЮЦИОННЫХ
СТРАТЕГИЙ С ИСПОЛЬЗОВАНИЕМ НЕЙРОСЕТЕВЫХ МЕТАМОДЕЛЕЙ
Павел Афонин
http://foibg.com/ibs_isc/ibs-09/ibs-09-p10.pdf
|
THE USAGE OF NEURAL NETWORKS FOR THE MEDICAL DIAGNOSIS
By: Kateryna Malyshevska
(3820 reads)
Rating:
(1.00/10)
|
Abstract: The problem of cancer diagnosis from multi-channel images using the neural networks is investigated.
The goal of this work is to classify the different tissue types which are used to determine the cancer risk. The
radial basis function networks and backpropagation neural networks are used for classification. The results of
experiments are presented.
Keywords: neural networks, backpropagation, RBF, uterine cervix, cancer, classification.
ACM Classification Keywords: I.5.1 Pattern Recognition - Neural nets
Link:
THE USAGE OF NEURAL NETWORKS FOR THE MEDICAL DIAGNOSIS
Kateryna Malyshevska
http://foibg.com/ibs_isc/ibs-09/ibs-09-p09.pdf
|
PERFORMANCE COMPARISON OF MATLAB AND NEURO SOLUTION SOFTWARE ON ESTIMATION ...
By: Soyhan et al.
(3244 reads)
Rating:
(1.00/10)
|
Abstract: In the world, scientific studies increase day by day and computer programs facilitate the human’s life.
Scientists examine the human’s brain’s neural structure and they try to be model in the computer and they give
the name of artificial neural network. For this reason, they think to develop more complex problem’s solution. The
purpose of this study is to estimate fuel economy of an automobile engine by using artificial neural network (ANN)
algorithm. Engine characteristics were simulated by using “Neuro Solution” software. The same data is used in
MATLAB to compare the performance of MATLAB is such a problem and show its validity. The cylinder,
displacement, power, weight, acceleration and vehicle production year are used as input data and miles per
gallon (MPG) are used as target data. An Artificial Neural Network model was developed and 70% of data were
used as training data, 15% of data were used as testing data and 15% of data is used as validation data. In
creating our model, proper neuron number is carefully selected to increase the speed of the network. Since the
problem has a nonlinear structure, multi layer are used in our model.
Keywords: Artificial Neural Network, Fuel Economy
Link:
PERFORMANCE COMPARISON OF MATLAB AND NEURO SOLUTION SOFTWARE
ON ESTIMATION OF FUEL ECONOMY BY USING ARTIFICIAL NEURAL NETWORK
Hakan Serhad Soyhan, Mehmet Emre Kilic, Burak Gokalp, Imdat Taymaz
http://foibg.com/ibs_isc/ibs-09/ibs-09-p08.pdf
|
SELF-LEARNING FUZZY SPIKING NEURAL NETWORK AS A NONLINEAR PULSE-POSITION ...
By: Bodyanskiy et al.
(3323 reads)
Rating:
(1.00/10)
|
Abstract: Architecture and learning algorithm of self-learning spiking neural network in fuzzy clustering task are
outlined. Fuzzy receptive neurons for pulse-position transformation of input data are considered. It is proposed to
treat a spiking neural network in terms of classical automatic control theory apparatus based on the Laplace
transform. It is shown that synapse functioning can be easily modeled by a second order damped response unit.
Spiking neuron soma is presented as a threshold detection unit. Thus, the proposed fuzzy spiking neural network
is an analog-digital nonlinear pulse-position dynamic system. It is demonstrated how fuzzy probabilistic and
possibilistic clustering approaches can be implemented on the base of the presented spiking neural network.
Keywords: computational intelligence, hybrid intelligent system, spiking neural network, fuzzy receptive neuron,
fuzzy clustering, automatic control theory, analog-digital system, second order damped response system.
ACM Classification Keywords: I.2.6 Artificial Intelligence: Learning – Connectionism and neural nets; I.2.8
Artificial Intelligence: Problem Solving, Control Methods, and Search – Control theory; I.5.1 Pattern
Recognition: Models – Fuzzy set, Neural nets; I.5.3 Pattern Recognition: Clustering – Algorithms.
Link:
SELF-LEARNING FUZZY SPIKING NEURAL NETWORK
AS A NONLINEAR PULSE-POSITION THRESHOLD DETECTION DYNAMIC SYSTEM
BASED ON SECOND-ORDER CRITICALLY DAMPED RESPONSE UNITS
Yevgeniy Bodyanskiy, Artem Dolotov, Iryna Pliss
http://foibg.com/ibs_isc/ibs-09/ibs-09-p07.pdf
|
ОПРЕДЕЛЕНИЕ ПОНЯТИЯ «СМЫСЛ» ЧЕРЕЗ ОНТОЛОГИ
By: Леонид Святогор, Виктор Гладун
(4405 reads)
Rating:
(1.00/10)
|
Аннотация: Предложен новый подход к понятию «смысл» и дано его формально-графическое
определение через онтологию. Рассмотрена задача семантического (смыслового) анализа текстов
ЕЯ, которая основана на процедуре поиске подграфа концептуального графа, отображающего знания
о мире.
Ключевые слова: онтология, смысл, текст, семантический анализ.
ACM Classification Keywords: 1.2.4 Knowledge Representation Formalisms and Methods
Link:
ОПРЕДЕЛЕНИЕ ПОНЯТИЯ «СМЫСЛ» ЧЕРЕЗ ОНТОЛОГИЮ.
СЕМАНТИЧЕСКИЙ АНАЛИЗ ТЕКСТОВ ЕСТЕСТВЕННОГО ЯЗЫКА
Леонид Святогор, Виктор Гладун
http://foibg.com/ibs_isc/ibs-09/ibs-09-p06.pdf
|
ОБРАБОТКА ПРЕДЛОЖЕНИЙ ЕСТЕСТВЕННОГО ЯЗЫКА
By: Палагин et al.
(4632 reads)
Rating:
(1.00/10)
|
Аннотация: Описывается один из подходов к анализу естественно-языкового текста, который
использует толковый словарь естественного языка, локальный словарь анализируемого текста и
частотные характеристики слов в этом тексте.
Ключевые слова: представление текста, обработка текста, формальная логическая система.
ACM Classification Keywords: I.2.4 Knowledge Representation Formalisms and Methods - Representation
languages, I.2.7 Natural Language Processing - Language models
Link:
ОБРАБОТКА ПРЕДЛОЖЕНИЙ ЕСТЕСТВЕННОГО ЯЗЫКА
С ИСПОЛЬЗОВАНИЕМ СЛОВАРЕЙ И ЧАСТОТЫ ПОЯВЛЕНИЯ СЛОВ
Александр Палагин, Сергей Крывый, Дмитрий Бибиков
http://foibg.com/ibs_isc/ibs-09/ibs-09-p05.pdf
|
К АНАЛИЗУ ЕСТЕСТВЕННО-ЯЗЫКОВЫХ ОБЪЕКТОВ
By: Палагин et al.
(4382 reads)
Rating:
(1.00/10)
|
Аннотация: Рассматриваются проблемы анализа естественно-языковых объектов (ЕЯО) с точки
зрения их представления и обработки в памяти компьютера. Предложена формализация задачи анализа
ЕЯО и приведен пример формализованного представления ЕЯО предметной области.
Ключевые слова: термины предметной области, формальная логическая система, онтология.
ACM Classification Keywords: I.2.4 Knowledge Representation Formalisms and Methods - Representation
languages, I.2.7 Natural Language Processing - Language models
Link:
К АНАЛИЗУ ЕСТЕСТВЕННО-ЯЗЫКОВЫХ ОБЪЕКТОВ
Александр Палагин, Сергей Крывый, Виталий Величко, Николай Петренко
http://foibg.com/ibs_isc/ibs-09/ibs-09-p04.pdf
|
COMPUTER SUPPORT OF SEMANTIC TEXT ANALYSIS OF A TECHNICAL SPECIFICATION ON ...
By: Alla Zaboleeva-Zotova, Yulia Orlova
(3948 reads)
Rating:
(1.00/10)
|
Abstract: The given work is devoted to development of the computer-aided system of semantic text analysis of a
technical specification. The purpose of this work is to increase efficiency of software engineering based on
automation of semantic text analysis of a technical specification. In work it is offered and investigated a technique
of the text analysis of a technical specification is submitted, the expanded fuzzy attribute grammar of a technical
specification, intended for formalization of limited Russian language is constructed with the purpose of analysis
of offers of text of a technical specification, style features of the technical specification as class of documents are
considered, recommendations on preparation of text of a technical specification for the automated processing are
formulated. The computer-aided system of semantic text analysis of a technical specification is considered. This
system consist of the following subsystems: preliminary text processing, the syntactic and semantic analysis and
construction of software models, storage of documents and interface.
Keywords: natural language, semantic text analysis, technical specification.
ACM Classification Keywords: I.2.7 Natural Language Processing
Link:
COMPUTER SUPPORT OF SEMANTIC TEXT ANALYSIS
OF A TECHNICAL SPECIFICATION ON DESIGNING SOFTWARE
Alla Zaboleeva-Zotova?, Yulia Orlova
http://foibg.com/ibs_isc/ibs-09/ibs-09-p03.pdf
|
MOBILE ELECTION
By: Long et al.
(3559 reads)
Rating:
(1.00/10)
|
Abstract: Mobile phones have the potential of fostering political mobilisation. There is a significant political power
in mobile technology. Like the Internet, mobile phones facilitate communication and rapid access to information.
Compared to the Internet, however, mobile phone diffusion has reached a larger proportion of the population in
most countries, and thus the impact of this new medium is conceivably greater. There are now more mobile
phones in the UK than there are people (averaging at 121 mobile phones for every 100 people). In this paper, the
attempt to use modern mobile technology to handle the General Election, is discussed. The pre-election
advertising, election day issues, including the election news and results as they come in, and answering
questions via text message regarding the results of current and/or previous general elections are considered.
Keywords: mobile text messages, mobile election, mobile advertising, question-answering system
ACM Classification Keywords: I.2 Artificial intelligence: I.2.7 Natural Language Processing: Text analysis.
Link:
MOBILE ELECTION
Elena Long, Vladimir Lovitskii, Michael Thrasher, David Traynor
http://foibg.com/ibs_isc/ibs-09/ibs-09-p02.pdf
|
MOBILE SEARCH AND ADVERTISING
By: Lovitskii et al.
(3874 reads)
Rating:
(1.00/10)
|
Abstract: Mobile advertising is a rapidly growing sector providing brands and marketing agencies the opportunity
to connect with consumers beyond traditional and digital media and instead communicate directly on their mobile
phones. Mobile advertising will be intrinsically linked with mobile search, which has transported from the internet
to the mobile and is identified as an area of potential growth. The result of mobile searching show that as a
general rule such search result exceed 160 characters; the dialog is required to deliver the relevant portion of a
response to the mobile user. In this paper we focus initially on mobile search and mobile advert creation, and
later the mechanism of interaction between the user’s request, the result of searching, advertising and dialog.
Keywords: mobile text messages, mobile search, mobile advertising, question-answering system
ACM Classification Keywords: I.2 Artificial intelligence: I.2.7 Natural Language Processing: Text analysis.
Link:
MOBILE SEARCH AND ADVERTISING
Vladimir Lovitskii, Colin McCaffery?, Michael Thrasher, David Traynor, Peter Wright
http://foibg.com/ibs_isc/ibs-09/ibs-09-p01.pdf
|
|
|